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The unsteady-state radiative interaction of two opaque gray bodies according to the Stefan-Boltzmann law 
is considered. The problem is reduced to a non-linear Volterra integral equation for the net radiation den- 
sity. A solution is obtained for a linear approximation. The general case and the short-time behavior are 
discussed. 

The thermal interaction between heat-conducting bodies which are insulated from external influences can be re- 
duced to unsteady-state heat transfer between their surfaces which results in the establishment of  temperature fields. De- 
pending on the physical and optical properties of  the interacting bodies, as well as on their surface properties, one can 
distinguish between perfect and "imperfect" thermal contacts. The latter include all thermal contacts occuring in na- 
ture, in which the interaction takes place by conduction, convection, or radiation. 

Recently, the interest in these problems has increased due to the increasing number of  investigations of fast pro- 
cesseso 

An essential condition, which makes it possible to formulate these problems of thermal interaction, is the com-  
mensurability of the resulting heat fluxes in the interacting bodies at corresponding moments of time. 

These conditions can be realized during the initial period of interaction in heat transfer between arbitrary bodies, 
as well as in the case when the interacting bodies have thermal capacities of the same order [1]. When the interacting 
bodies have finite thermal conductivity (finite dimensions), the problem becomes complicated due to the effect of heat 
conduction from the surfaces. 

In the following we shaI1 consider the radiative interaction between two plane-parallel infinite plates of finite 
thickness which have different thermophysical properties. The interacting surfaces are in thermal radiative contact. Ex- 

ternal thermal influences are excluded. 

The problem may be formulated as follows: 
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T1 (x, O) = Tr , T2 (x, O) = T2. 

The general solution in transform form is 
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Here 

u-~ (x, p) = j' T~ (x, x) [exp ( - -p '0 ]  d z, 
0 

o0 

- f E i ( O , p ) =  Ei(0, x ) [ e x p ( - - p x ) l d z  ( i =  1,2). 
0 

The expressions for the temperatures T i (0, r) of the interacting surfaces, obtained by the inverse Laplace transfor- 
mation, are 

T , ( O , x ) = T , +  a-~-~R ; [ l + 2  ~__jexp[--~,n'(x--/)]].E,(O.t)dt. 
n = l  
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Here 

tLi = ::2 ai/R ~ (i = 1, 2). 

Taking into account that E 1 (0, r) : -F. z (0, r) and using (5), we obtain the solution for the ne t  radiation density 
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which can be represented also in the form 
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where 
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Equation (7) shows that the process of radiative heat transfer between the bodies under consideration is described by 
a non=linear V01terra integral equation for the dimensionless net radiation density ~0 (r) and, consequently, requires 
deeper discussion�9 

In the following we shall present an approximate solution of equation (7) by the method of successive approxima- 
tions, using a linearization described in [t].  

Equation (7), linearized by the above method, can be rewritten in ~he form 

where 
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% (x) = 1 + 2 exp [ - -  t~n ~ (x --  t)l ~p (t) dt 
0 r t ~ l  

After several  transformations, equation (8) can be brought to the form 

(i = 1, 2). 
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The kernel K (r) of equation (9) satisfies addit ional  conditions [2], which make it possible to obtain a closed-form 

solution. 

Applying the Laplace transform to equation (9) and to its solution 

eO ('0 = ~ (zi) -F )" .i R (~ - -  t) ~ (z~) dr, (10) 
0 

we obtain the expression M (p) for the transform of the resolvent R (r - t) of equation (9) in the form 
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where 

3 Yi.-- 4~q~ z~ R*/a~ [i ~ 1, 2). 

Applying the inverse Laplace transform 

R = 1 ; 34 (p) exp (p ~) clp, 
2T:i 

E--iQo 

and using some simple transformations, the expression for the resolvent of equation (9) can be reduced to the form 

~ ( 2 a , ) (  , ,  
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The expression for the dimensionless net radiation density is, in its final form, 
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where v m are the roots of the transcendental  equation 
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In the range of low Fourier numbers (Fo 1 = a I r/RZ), the dimensioNess group ] / - ~ i  R takes on high values [3], 
which makes it possible to introduce in equation (11) considerable simplifications, so that 

where 

M - -   /(V7 + (14) 

Inverting (14), we obtain the resolvent 

1 
(15) 

For small values of "r we can use the series 
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and, taking account of (15) and (16), we can bring equation (10) to the form 
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Expanding exp ooZr in a series and taking the first two terms, we obtain the final form of the short-t ime solution 

~p0: )~: (z i )  exp~2~ - F:--- ~- V ~  ( - 1  X 
n~0 

n! (2n + n + 3/2 n + 5 / 2  

Note that in the case of therma! interaction according to Newton's law (unsteady-state interaction between a bound- 

ary Iayer and a body surface, when the thermal capacities of the body and of the boundary layer are of the same order), 

the solution can be significantly simplified.. In particular, the expression for the dimensionless net heat flux becomes 

where 

~o 

q~ (,) = 1 - - 2  ~ ,  [I - - e x p  (--",~, Tax/Re)] X 
m~i  

�9 F - - - -  1 - - I  y~ ] /a l /a2  r y~ + . . - - 7 7 = - ~  - -  
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Yi = a a J k i R ,  q9 (~) = [T2 (0, ~ ) - - T x  (0, ~)] / [T~.-  T1]. 

The figure shows the dimensionless net radiation density as a function of t ime for the case of interaction between 

the following plates: R, = R 2 : 0.1 m; a 1 = Xl/clp i = 0. 612 mP/hr, T 1 = 300~ a z = kp/czp2 = 0. 0636 mZ/hr, T a : 
= 1500~ 

In the course of the calculations it was found that the value of a t (zi) does not differ significantly from unity (the 

value of at (zi) at r = 0), which makes the calculations considerably simpler. 

The evaluation of the roots of the transcendental equation (13) reduces to the evaluation of the root u, only, which 
makes the greatest contribution to the variation of ~a (r) as a function of r. 

The figure also shows the Variation of ~a (r) for the case of two semi- inf ini te  bodies with the same therrnophysical 

properties as listed above. Note that the ini t ia l  parts of the curves coincide only for very small values of r .  

NOTATION 
1 )-1_ 

- + - - - -  I effective emissivity; a i thermal diffusivities; E i (0, T) -- net radiation densities; %2= crew: ~,J~ A.. , 
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�9 A t ,  A 2 - absorptivities of the interacting bodies; k i - coefficients of thermal conductivity; z I, z z - values of func- 
tionals, involving dimensionless net fluxes averaged over 
At, which are constant over Z~r; a - coefficient of convec-  

tive heat transfer. 

REFERENC ES 

2 .. . .  # 6 ~ r . t 0  ~ 

Dimensionless net radiation density between two 
bodies ~ (r) as a function of t ime r Oar): 1) Ac- 
cording to Eq. (13); 2) solution for semi- inf ini te  
bodies [1]. 

1. N. A. Rubtsov, PMTF, no. 1, 1963o 

2. V. L Smirnov, Course of Higher Mathematics 
[in Russian], vol. IV. 

3. A. V. Lykov, Theory of Heat Transfer [in Russian], 
Gosizdat, 1952. 

18 June 1964 Institute of Thermal Physics, Siberian 

Branch AS USSR, Novosibirsk 

538 


